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Abstract

We have successfully demonstrated the capability of neural net to learn the generation
grammar and automata for discrete symbolic sequences. The first level of complexity is
represented by the regular grammar and can be learned by a recurrent neural net. The
capacity of these recurrent neural net to represent finite state machines that generate these
regular grammar has also been theoretically estimated. In the next level of complexity,
neural net was trained to operate a stack memory to recognize context free sequences.
Finally, we showed that recurrent net can be constructed with a neural tape to represent a
universal Turing machine.

For continuous time series, we also showed that neural net can be used to classify
curves with different topology, to control chaos system without pre-knowledge of its
fixed points and to perform suystem identifications for real physical systems. For the last
task, we have successfully trained a neural net to simulate the flight dynamics of a
helicopter UH-60. The system used is a MIMO model of recurrent net. And the helicopter
model has six dynamical degrees of freedom, the vertical, side and forward speed, the
pitch rate, roll rate, yaw rate and four control manuvers, the lateral, lontitudinal,
directional and the collective controls.



1. Introduction:

In the past few years, we have demonstrated that recurrent neural network can be
trained to work like a finite state machine that will generate symbolic sequence obeying
certain regular grammars. With the help of a soft stack, the recurrent neural net can also
be trained to work as a finite state controller that will use the stack to infer sequences that
are generated from context free grammars.

Theses results prompted us te ask whether in continuous dynamics, such complex
sequential behavior can also be captured by neural networks? In particular, can neural
network identify the time series that are generated from given chaotic attractors, which in
general exhibit very complex temporal behavior? One general characteristic of chaotic
attractor dynamics is the dissipative nature of the system and the contraction of the phase
space of the system asymptotically. This allows us to apply the synchronization as a
measure to characterize the chaotic time series. We tested these ideas on several neural
networks and chaotic dynamical systems and found preliminary results encouraging.

The general usefulness of neural networks in processing temporal signals could be
tested on other real dynamical systems. This is demonstrated in our second topics studied
during the past year. We secured real flight dynamics data for UH-60 helicopters. These
data were used to perform system identifications of the helicopter system under four
separate control mode. Our results showed that neural network modeling of the helicopter
flight dynamics can be implemented easily without the complicated knowledge of the
physical model of the helicopter. The performance of the neural network simulator is
perhaps superior than the traditional system identification methods.

II. Chaotic Attractor Signal Classification using Neural Network Synchronizer

This work is stimulated by the interesting work of Pecora and Carroll about the
synchronization of chaotic attractors. Qur basic assumption is that a recurrent neural
network could simulate any given dynamical systems. It should therefore be able to
simulate chaotic dynamics.

1) Basic Recurrent Networks

We consider a recurrent network with N state-neurons x(¢). The dynamic equations
can be written as a set of first order differential equations:

d/dt x(t) = F (x(t), w, I(t)) (1)

where w is a matrix representing the weights and other adjustable parameters, I(z) is a
vector representing the external inputs to the network at time t, and x() is the state neuron
vector. The nonlinear function F{) may be chosen as the sigmoid function.



There is an intrinsic difficulty in trying to use recurrent neural net to classify
continuous temporal patterns, namely, there is no unique way to initialize the internal
state neurons. This problem is absent in the grammatical inference problem because the
sequential machine can be assumed to start from a common start state and end with a set
of fixed end states. For real world signals, such as sonar signals, radar signals and other
continuous signals, it is difficult to say when the signal started or ended. We therefore
need a synchronization scheme to time align the signal with the internal states of the
neural classifier. Since chaotic dynamical systems approach to a fixed attractor
asymptotically, we would like to study the synchronization problem with them first.

2) Pecora and Carroll’s work on Synchronization

Pecora and Carroll studied the synchronization of two nonlinear dynamical systems.
One system is the driving system and the other one the driven system. For example,
consider a three dimensional autonomous system, running under a certain initial
condition,

d/dtx(t) = F (x, y, z), d/dt y(t) = G(x, y, z), didtz(t)=H(x,y, z)

has an orbit on the attractor given by (xj(2), y1(t), zj(t)). A reduced system driven by the
variable xj(z) of the given dynamical system is running under a different initial condition.

d/dty(t) = G(xy(t),y,z) and d/dtz(t) = H(xj(1), y, 2)

Would these two dynamical system eventually synchronize with each other? If it does, we
can probably use it as a way to identify the signal x ;(¢) as coming from the given chaotic

dynamical system without worrying about the initial assignment of internal state neuron
activation values. Pecora and Carroll showed that under a very general conditions,
namely that the Lyapunov exponent of the reduced dynamical systems are negative, the
synchronization is possible. Furthermore, the two dynamical system does not have to be
faithfully reductions from each other. As long as they are close in their parameters, the
synchronization will be close.

3) Neural Network Simulations.

The synchronization idea can be considered as a generalization of the fixed point
attractor idea of recurrent network dynamics first studied by Pineda. Now that the
asymptotic attractors are no longer the simple fixed points which are trivially static. Our
final attractors are full fledged chaotic attractors with complex time dynamics. The neural
networks are demanded not only to reproduce these complex time dynamics but also to
do it with locked time steps. In this sense, we are building a set of neural network
templates for the various nonlinear dissipative dynamical systems. We would like to
match a given unknown temporal signals with these neural network templates by
measuring the degree of synchronization achieved to identify the signal.




To study the feasibility of thié idea, we chose signals from the attractors of two
different dynamical systems. The first one is the Lorenz attractor (a=10, b=2.667, r=28)

dx/dt = -a(x+y), dy/dt=-xz+rx-y, dz/dt=xy-bz
and the second system is the Rossler attractor: (m=35.7, b=0.2)
d/dt = (y+z), dy/dt=-x+by, dzdt=b+zx-m)

The system parameters are chosen such that both of them have chaotic attractors.
The neural network chosen for these two attractors is a recurrent net with the following
network dynamics:

xi(t+1) = axi(e) + b [ S Wigylt) + S Wi yle) + il
yi(t) = tanh (cixi(t))

The input to the network is the one dimensional time series x() sampled from the chaotic
attractors to be classified which is clamped to the first component of the state vector x?)

in the neural network. The synchronization error measure is defined as

E) = 12 [*RI®) - x1 ()2 dt
4) Results:

We used RTRL training algorithm to train the network with 5000 time steps data
from each attractor. After about 10 epochs of training, the synchronization error reached a
steady state value. We then tested the trained neural net synchronizers with new data. All
the input data (length 5000 time steps) were correctly identified. These testing data are
calculated from the original dynamical systems with different initial conditions. The
synchronizers are also initialized with different internal state values. The results showed
that the synchronization errors are not sensitive to these initial conditions.

These preliminary results showed that recurrent neural net can indeed be trained to
simulate chaotic dynamical systems. Use them as synchronizer templates are robust for
the limited number of experiments done so far. We intend to do more work along these
lines and eventually go beyond the chaotic attractor dynamics to test on more general
temporal signals.

II1. Simulation of Helicopter Flight Dynamics



1) Introduction:

The main thrust of this research is to try constructing a neural net helicopter
dynamics simulator based on flight data supplied to us by Captain Walker. Previously, a
one variable recursive model was constructed to fit and predict the pitch rate q and its
time derivative q dot from the flight database with fairly good result. All other state
variables are included in this model and are imported directly from the recorded database.
It is therefore an incomplete simulation. In the past four months, we attempted at
complete simulations for four independent maneuvers separately. These simulations were
done with full recursion of the participated state variables. The predictions of these
complete recursive models are noticeably better than the previously constructed one-
variable recursive models.

2) One Variable Recursive Models

These were our first attempt to test out the idea of a neural net helicopter flight
dynamics simulator. Since the total number of the control and state dynamical variables
are many( 15 state variables and 4 control inputs), it seemed reasonable to test out the
neural net simulator idea by letting only one state variable to evolve recursively with the
predictor dynamics. All other control and state variables were imported directly from the
recorded data set. This is therefore an incomplete simulation. The success of this first
attempt prompted us to proceed with a more complete modeling.

3) Complete Recursive Models for Separate Control Maneuvers

In our database, there are four separate control maneuvers. These control maneuvers
will have dynamical consequence on separate subsets of the 15 state variables. For
example, the lateral control maneuver will mainly affect the rolling variable p, its time
derivative pdot and the side shift velocity v and v dot. It is therefore interesting to see
how good the neural net simulator will be by training and testing out on data belong to
these separate set of maneuvers.

4) Variables Included

As we said earlier, in these control maneuver dependent simulations, only a subset of
the 15 state variables are included in each simulation experiment. For example, in the
simulation for which the maneuver is dominated by the lateral control input, the state
variables included in the simulation input are :

State Variables: p(t), p(t-1), p(t-2); and the
Control Input Variables: Lat(t), Lat(t-1), Lon(t), Lon(t-1), Dir(t), Dir(t-1), Col(t),
Col(t-1).




Here the state variables p(z+1) will be generated from the neural net predictor at the time
step ¢ and then feed into the net for the next time step #+1 to recursively generate an
output p(z+2). In other words, the output of this neural net predictor is :

Increment of the State Variable: delta p(t) = p(t+1) - p(t).

We choose delta p(t) instead of p(t+1) to improve on the sensitivity of the change for
effective training.

The control variables included are imported directly from the recorded database.
Although all four control variables are included, but in the case of lateral dominated
maneuver, the lateral control input is the most important.

5) Training and Testing Data Set:

We picked randomly one run of lateral frequency sweep, one run of doublet and one
run of 2-3-1-1 for training and tested on other data set of all three types. The training is
completely local, i.e. only input output pairs at a local time frame are used for training.
Their relative ordering and distance in time are not known to the neural net. Long time or
even short time correlations are not incorporated into the simulator. It is therefore very
encouraging to see the good simulation result,

6) Testing Results:

We trained four independent neural net simulators for the four separate control
dominated maneuvers. Their testing results on the testing data set are generally good. The
predicted curve follows the recorded data curve closely. In most cases, the relative and
the absolute error are small. This is remarkable since only a subset of state variables are
included in the simulation and also the prediction is completely recursive. This indicates
that the helicopter dynamics in these data are mostly separable into the four sets of
control maneuvers. Within each of these maneuver, only a subset of state variables are
important to determine the state of the helicopter. Perhaps in a more general flight
conditions, such as transitions between different control modes, the nonlinear coupling
between these subset of state variables become important. Otherwise, these separate
submodules seem sufficient to describe most of the flight conditions.

Conclusion:



We have successfully demonstrated the capability of neural net to learn the generation
of grammar and automata for discrete symbolic sequences. This include the regular
grammar and the associated finite state machine, the context free grammar sequences and
the associated pushdown automata. Finally, we have also showed that recurrent net can
be constructed with a neural tape to represent a universal Turing machine.

For continuous time series, we demonstrated the ability for neural net to classify
curves with different topology, to control chaotic systems without the pre-knowledge of
their fixed points and to perform suystem identifications for real physical systems. For
the last task, we have successfully trained a neural net to simulate the flight dynamics of a
UH-60 helicopter.




